BeFIT 2011: Heterogeneous Face Recognition in VIS vs NIR modalities

Debaditya Goswami
Chi Ho Chan
David Windridge
Josef Kittler

Centre for Vision, Speech and Signal Processing
University of Surrey
Contents

• Introduction
 – Motivation for Cross Spectral Face Recognition
 – Motivation for Standardised testing

• Dataset
 – Acquisition, sample size,
 – Protocol: Configuration I and II

• Methodology
 – Preprocessing, Feature Extraction, Dimensionality Reduction, CCA projection

• Experiments
 – Overview of algorithmic combinations

• Results

• Discussion

• Conclusions
Face Recognition

Face Recognition (Challenges)

- **Natural Variation**
- **Occlusion**
- **Aging**
- **Illumination Variation**

Decision (Yes/No)

Probe

Gallery

www.surrey.ac.uk
Illumination Invariant Face Recognition

Spatial Methods
- 3D Re-lighting
- Photometric

2D Normalisation

Spectral Methods
- Unimodal Spectral
- Hyper-Spectral
- Cross-Spectral

Hardware Based

Software Based

• Model-based Approaches
• Algorithmic Approaches

www.surrey.ac.uk
Cross Spectral Face Matching

- Matching NIR probe images against a set of VIS gallery images

- Scenarios – Airports, building entry points

- NIR: 800 – 1050 nm band

- Spectral Differences
 - Diffusion of features in NIR (Subsurface Scattering)
 - Light response dictating distinct facial morphology
 - Texture discrepancies

VIS face images (top) and corresponding NIR images (bottom)
Existing Heterogeneous Face Recognition Systems

- Subspace projection (Lin et al. 2006)
- Canonical Correlation Analysis as a form of feature mapping (Li et al. 2007)
- Difference of Gaussian filtering (Liao et al. 2009)
- LBP feature representation (Liao et al. 2007, Chen et al. 2009)
Testing Procedure

<table>
<thead>
<tr>
<th>Total Subjects</th>
<th>Vis Images</th>
<th>Nir Images</th>
<th>Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>400</td>
<td>400</td>
<td>HFB</td>
</tr>
<tr>
<td>48</td>
<td>192</td>
<td>192</td>
<td>TINDERS</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>90</td>
<td>Chen et al. CVPR 2009</td>
</tr>
</tbody>
</table>

- Multiple protocols with several different datasets
Pose and Illumination Cross Spectral (PICS) Dataset

430 Subjects

-10 degree deviation, frontal

Fully frontal

+10 degree deviation, frontal

www.surrey.ac.uk
Protocol

- \(V_{trn} \) – 175 subjects x 3, 525 images
- \(N_{trn} \) – 186 Subjects x 3, 558 images
- \(V_{tst} \) - 255 Subjects, 1545 images
- \(N_{tst} \) – 244 Subjects, 1563 images
Methodology

1. **Preprocessing**
 - Raw
 - Sequential Chain (SQ)
 - Single Scale Retinex (SSR)
 - Self-Quotient Image (SQI)

2. **Feature Extraction**
 - Local Binary Patterns

3. **Subspace Projection**
 - PCA/LDA
 - CCA

4. **Classification**
 - Nearest Neighbour
 - Chi-Squared
 - Normalised Correlation

www.surrey.ac.uk
Mapping: Canonical Correlation Analysis

Where $C_{yy} \in \mathbb{R}^{q \times q}$ and $C_{xx} \in \mathbb{R}^{p \times p}$ are the within-set covariance matrices, while $C_{xy} \in \mathbb{R}^{p \times q}$ is the between-set covariance matrix.

$$
\rho = \frac{E[xy]}{\sqrt{E[x^2]E[y^2]}} = \frac{E[w_x^T xy^T w_y]}{\sqrt{E[w_x^T xx^T w_x]E[w_y^T yy^T w_y]}} \\
\rho = \frac{w_x^T C_{xy} w_y}{\sqrt{w_x^T C_{xx} w_x w_y^T C_{yy} w_y}}.
$$

$$
\mathbf{x} = \mathbf{w}_x^T \mathbf{x} \quad \quad \quad \mathbf{y} = \mathbf{w}_y^T \mathbf{y}
$$
Configuration I Experiments

<table>
<thead>
<tr>
<th>Preprocessing</th>
<th>Feature</th>
<th>Classification</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQ</td>
<td>Image space</td>
<td>LDA+NC</td>
<td>I_a, I_b</td>
</tr>
<tr>
<td>SSR</td>
<td>Image space</td>
<td>LDA+NC</td>
<td>I_a, I_b</td>
</tr>
<tr>
<td>SQI</td>
<td>Image space</td>
<td>LDA+NC</td>
<td>I_a, I_b</td>
</tr>
<tr>
<td>Raw</td>
<td>Image space</td>
<td>LDA+NC</td>
<td>I_a, I_b</td>
</tr>
<tr>
<td>SQ</td>
<td>Uniform LBPH</td>
<td>Chi-Squared</td>
<td>I_a, I_b</td>
</tr>
<tr>
<td>SSR</td>
<td>Uniform LBPH</td>
<td>Chi-Squared</td>
<td>I_a, I_b</td>
</tr>
<tr>
<td>SQI</td>
<td>Uniform LBPH</td>
<td>Chi-Squared</td>
<td>I_a, I_b</td>
</tr>
<tr>
<td>Raw</td>
<td>Uniform LBPH</td>
<td>Chi-Squared</td>
<td>I_a, I_b</td>
</tr>
<tr>
<td>SQ</td>
<td>Uniform LBPH</td>
<td>LDA+NC</td>
<td>I_a, I_b</td>
</tr>
<tr>
<td>SQI</td>
<td>Uniform LBPH</td>
<td>LDA+NC</td>
<td>I_a, I_b</td>
</tr>
<tr>
<td>SSR</td>
<td>Uniform LBPH</td>
<td>LDA+NC</td>
<td>I_a, I_b</td>
</tr>
<tr>
<td>Raw</td>
<td>Uniform LBPH</td>
<td>LDA+NC</td>
<td>I_a, I_b</td>
</tr>
</tbody>
</table>
Photometric Normalisation
Results

Photometric Normalisation

\[I_a \]

Photometric Normalisation

\[I_b \]
Supervised vs Unsupervised Performance
Configuration II

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Probe</th>
<th>Gallery</th>
<th>Training</th>
<th>Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_a</td>
<td>NIR</td>
<td>VIS</td>
<td>V_{trn}</td>
<td>$V_{tst} + N_{tst}$</td>
</tr>
<tr>
<td>I_b</td>
<td>VIS</td>
<td>NIR</td>
<td>N_{trn}</td>
<td>$V_{tst} + N_{tst}$</td>
</tr>
<tr>
<td>II_a</td>
<td>NIR</td>
<td>VIS</td>
<td>$V_{trn} + N_{trn}$</td>
<td>$V_{tst} + N_{tst}$</td>
</tr>
<tr>
<td>II_b</td>
<td>NIR</td>
<td>VIS</td>
<td>$V_{trn} + N_{trn}$</td>
<td>$V_{tst} + N_{tst}$</td>
</tr>
</tbody>
</table>
CCA Recognition Performance

Graphs showing the rank-1 recognition rate for different algorithms and combinations.
Fusion Experiments

- Performance plateau at 5-7 algorithmic combinations
- SQ preprocessing (DoG-based) present in every single top-performing combination
- Use of more than 7-8 combinations degrades performance
Discussion

• Supervised vs Unsupervised Process chains
• Importance of Pre-processing techniques
• Over-fitting of CCA model projections
• Fusion experiments achieve peak performance
 – Importance of SQ (DoG-based) in top performing permutations
Conclusions

• Standardised testing for cross spectral datasets
• Dataset containing pose and illumination variation
• Baseline algorithms to establish a true evaluative framework
• Importance of projection model, and probe-gallery combinations
Contact Details

- http://www.ee.surrey.ac.uk/CVSSP/Datasets (soon!)

- Email debadityag@gmail.com or c.chan@surrey.ac.uk
 - Name
 - Organisation