Annotated Facial Landmarks in the Wild

A Large-scale, Real-world Database for Facial Landmark Localization

Martin Köstinger, Paul Wohlhart, Peter M. Roth, Horst Bischof
Institute for Computer Graphics and Vision, Graz University of Technology
{kkoestinger,pwohlhart,prothor,bischof}@icg.tugraz.at
Motivation

• Facial Landmarks useful for many face related vision tasks
 – MV Face Detection
 – Face Alignment
 – Face Pose Estimation
 – Face Recognition
Agenda

• Motivation

• **Related Databases**

• Annotated Facial Landmarks in the Wild (AFLW) database

• Intended Uses
 – Multi-View Face Detection
 – Face Pose Estimation
 – Facial Landmark Localization

• Data and Tools
Related Databases

• Huge interest in automatic face analysis

• Many face databases exist
 – Only a subset provides additional annotations
 – Large-scale databases often provide only a little number of landmarks

[Angelova et al., 2005]
Related Databases

<table>
<thead>
<tr>
<th>Database</th>
<th># landmarked imgs.</th>
<th># landmarks</th>
<th># subjects</th>
<th>image size</th>
<th>image color</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caltech 10,000 Web Faces</td>
<td>10,524</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>color</td>
<td>[2]</td>
</tr>
<tr>
<td>CMU / VASC Frontal</td>
<td>734</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>grayscale</td>
<td>[26]</td>
</tr>
<tr>
<td>CMU / VASC Profile</td>
<td>590</td>
<td>6 to 9</td>
<td>-</td>
<td>-</td>
<td>grayscale</td>
<td>[27]</td>
</tr>
<tr>
<td>IMM</td>
<td>240</td>
<td>58</td>
<td>40</td>
<td>648x480</td>
<td>color/grayscale</td>
<td>[23]</td>
</tr>
<tr>
<td>MUG</td>
<td>401</td>
<td>80</td>
<td>26</td>
<td>896x896</td>
<td>color</td>
<td>[22]</td>
</tr>
<tr>
<td>AR Purdue</td>
<td>508</td>
<td>22</td>
<td>116</td>
<td>768x576</td>
<td>color</td>
<td>[18]</td>
</tr>
<tr>
<td>BioID</td>
<td>1,521</td>
<td>20</td>
<td>23</td>
<td>384x286</td>
<td>grayscale</td>
<td>[15]</td>
</tr>
<tr>
<td>XM2VTS</td>
<td>2,360</td>
<td>68</td>
<td>295</td>
<td>720x576</td>
<td>color</td>
<td>[19]</td>
</tr>
<tr>
<td>BUHMAP-DB</td>
<td>2,880</td>
<td>52</td>
<td>4</td>
<td>640480</td>
<td>color</td>
<td>[3]</td>
</tr>
<tr>
<td>MUCT</td>
<td>3,755</td>
<td>76</td>
<td>276</td>
<td>480x640</td>
<td>color</td>
<td>[20]</td>
</tr>
<tr>
<td>PUT</td>
<td>9,971</td>
<td>30</td>
<td>100</td>
<td>2048x1536</td>
<td>color</td>
<td>[16]</td>
</tr>
<tr>
<td>AFLW</td>
<td>25,993</td>
<td>21</td>
<td>-</td>
<td>-</td>
<td>color</td>
<td></td>
</tr>
</tbody>
</table>
Annotated Facial Landmarks in the Wild

- 25,993 faces in 21,997 real-world images
 - 66% non-frontal faces
 - 56% female, 44% male

- 389,473 annotations
 - 21 point markup scheme

- Comprehensive set of annotations
 - Landmarks
 - Face Rectangles
 - Face Ellipses
 - Coarse Face Pose

- Tools to manipulate annotations
 - Also importers to our database format for other databases such as e.g. BioID
Landmark Markup
Intended Uses

• Not only a benchmark database!

• Train and Test
 – Real-world MVFD
 – Facial feature localization
 – Head pose estimation
Facial Landmark Localization

• For alignment or pose estimation
• Influence of a Face Alignment Step ...
 – LFW / face verification task
 – Outcome: Better aligned faces give better recognition results
 – Needs rather elaborate annotations to train a detector
• AFLW provides loads of landmarks to train and evaluate ...

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>not aligned</td>
<td>60.85%</td>
<td>63.22%</td>
<td>65.53%</td>
<td>66.13%</td>
</tr>
<tr>
<td>aligned</td>
<td>61.80%</td>
<td>65.68%</td>
<td>68.43%</td>
<td>70.13%</td>
</tr>
<tr>
<td>+</td>
<td>0.95%</td>
<td>2.47%</td>
<td>2.90%</td>
<td>4.00%</td>
</tr>
</tbody>
</table>
Face Pose Estimation

• Database comes with approx. head pose
 – Roll, pitch, yaw angles

• Pose automatically estimated from facial landmarks
 – Least squares fit of 2D projections on the 3D model
 – Postit algorithm
 [DeMenthon and Davis, 1995]

• E.g. retrieve a pose specific subset of images
Multi-View Face Detection

- Frontal face detection
 - Solved
- **Multi-view face detection is still a challenge**
 - Needs a lot of data, e.g. [Huang et al., 2005] used 75k faces
 - Head pose is beneficial
 - Pose specific detectors
 - AFLW provides it
- **AFLW ready to use with FDDDB protocol** [Jain and Learned-Miller, 2010]
 - Annotation based on ellipse
Data and Tools

• Backend supports different face data collections...

• **SQLite Database** to collect the annotations
 – SQL query needs by far less effort than writing traditional code, e.g. to select faces with a specific pose range
 – Database scheme supports multiple face databases
 – C++ and Matlab Wrapper¹

• **Label GUI**
 – Display and manipulate annotations

• **Programming Tools**
 – Display annotations
 – Calculation of pose angles, face ellipses etc.
 – Export to FDDB ground truth file

• Tested under Windows / Linux

¹ http://mksqlite.berlios.de/
Conclusion

• **Annotated Facial Landmarks in the Wild db provides**
 – a large-scale, real-world collection of face images
 – Not limited to frontal poses
 – Comprehensive set of annotations and tools

• **Suited to train and test algorithms, not only benchmark db!**
 – Ready to use with **FDDB** protocol

• **Future work:**
 – Attributes

• **Thanks to ...**
 – Interns
 – Colleagues of the Documentation Center of the National Defense Academy of Austria

The work was supported by the FFG projects MDL (818800) and SECRET (821690) under the Austrian Security Research Program KIRAS.